Dual-cycle dielectrophoretic collection rates for probing the dielectric properties of nanoparticles
نویسندگان
چکیده
A new DEP spectroscopy method and supporting theoretical model is developed to systematically quantify the dielectric properties of nanoparticles using continuously pulsed DEP collection rates. Initial DEP collection rates, that are dependent on the nanoparticle dielectric properties, are an attractive alternative to the crossover frequency method for determining dielectric properties. The new method introduces dual-cycle amplitude modulated and frequency-switched DEP (dual-cycle DEP) where the first collection rate with a fixed frequency acts as a control, and the second collection rate frequency is switched to a chosen value, such that, it can effectively probe the dielectric properties of the nanoparticles. The application of the control means that measurement variation between DEP collection experiments is reduced so that the frequency-switched probe collection is more effective. A mathematical model of the dual-cycle method is developed that simulates the temporal dynamics of the dual-cycle DEP nanoparticle collection system. A new statistical method is also developed that enables systematic bivariate fitting of the multifrequency DEP collection rates to the Clausius-Mossotti function, and is instrumental for determining dielectric properties. A Monte-Carlo simulation validates that collection rates improve estimation of the dielectric properties, compared with the crossover method, by exploiting a larger number of independent samples. Experiments using 200 nm diameter latex nanospheres suspended in 0.2 mS/m KCl buffer yield a nanoparticle conductivity of 26 mS/m that lies within 8% of the expected value. The results show that the dual-frequency method has considerable promise particularly for automated DEP investigations and associated technologies.
منابع مشابه
Real‐time dielectrophoretic signaling and image quantification methods for evaluating electrokinetic properties of nanoparticles
Real-time image signaling and quantification methods are described that allow easy-to-use, fast extraction of the electrical properties of nanoparticles. Positive dielectrophoretic (pDEP) collection rate analysis enables the dielectric properties of very small samples of nanoparticles to be accurately quantified. Advancing earlier work involving dual-cycle pulsed pDEP collection experiments, we...
متن کاملExtraction of dielectric properties from dielectrophoretic collection spectrum data
Introduction
متن کاملQuantifying dielectrophoretic collections of sub-micron particles on microelectrodes
This paper presents a technique for measuring and quantifying the dielectrophoretic collection of sub-micron particles on planar microelectrode arrays. Fluorescence microscopy and video recording is used to measure the number of particles collecting on an electrode as a function of time for various experimental parameters, such as applied electrode voltage and frequency. Video images are proces...
متن کاملMicrofluidic Device for Continuous Dielectrophoretic Separation of Cells in Division
This paper reports on a novel method for on-chip continuous separation of dividing and non-dividing cells based on differences in their dielectric properties. By means of two opposite dielectrophoretic force fields at multiple frequencies, the two populations of cells flowing through the microfluidic device are focused towards distinct equilibrium positions, which can be correlated to their cel...
متن کاملRoom temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles
Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles were studied. The effect of size on the properties, by capping silver (Ag) and gold (Au) nanoparticles by thiosemicarbazide (TSC) was investigated. The nanoparticles were synthesized by chemical reduction method. The structural formation, surface morphology, phase stabi...
متن کامل